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I. INTRODUCTION

The objective of this investigation is the development of a theoretical model
for, propagation of Extremely High Frequency (EHF) radio waves in a strongly scat-

tering medium such as a forest. The forest is described as a random medium which,

in first approximation, may be regarded as statistically homogeneous; and waveprop-

agation in this medium is characterized by the theory of radiative energy transfer

(transport theory). This theory permits one to take multiple scattering effects

fully into account while interference effects are neglected. Experimental evidence

confirms that the coherence length of mu waves in vegetation is short so that the

suppression of interference effects is an acceptable approximation.

All scatter objects in a forest environment, including tree trunks, branches,

and leaves, or pine needles, have large dimension.s compared to a wavelength in the

umi-wave region. As a consequence, the forest medium will produce strong forward

scattering and its scatter characteristic (phase function) may be represented by a

pronounced forward lobo with an isotropic background. Assuming this type of phase

function, the medium -is characterized by four parameters: the absorption cross

section per~ volum~e oA, the (total) scatter cross section per volume oS% the beam

width Ay of the forward scatter lobe, and the ratio a of the forward scattered

power and the total scattered power.

These four quanti ties are determined by the macroscopic and microscopic

structure parameters of the forest and, in principle, can be derived from these

lparameters. No attempt is made here to establish this relation theoretically.

Considering the structural complexity of the forest environment, this would appear

to be a hope]ess task. Rather, the transport equation is formulated and solved in

general terms and the dependency of the solutions on the parameters (AI oS, ATS and

• is established. Comparison with experimental results then permits one to deter-

mine estimates for these parameters by adjusting them such that the theoretical

curves agree with the experimental data. At the same time, the theory serves to

exp)lain and interpret the experimental results. Theory and experiments are shown

to be in good qualitative agreement. The experimental data utilized in this report

was obtained by Violette and Espeland [.1, 21. Achieving good quantitative agree-

ment, however, is not without difficulties. A larger measured data base and a re-

finement of the theory will probably be required.



Propagation characteristics to be determined include the range dependence of

both the coherent and incoherent field components of imu-wave beams transmitted

through woods and forests, and the directional spectrum of the incoherent component

(beam broadening) as a funcLion of vegetation depth and density. The theory shows,

in particular, that the range dependence is not determined by a simple exponential

decrease in signal strength at constant attenuation rate but a high attenuation"

rate at short distances into woods gradually transforms into a much lower attenu-

ation rate at large distances. This complex range dependence has been confirmed •

by the experiments and is explained by the interplay of the coherent (direct path)

component, which dominates at short distances into woods but is strongly attenu-

ated, and the incoherent (multiply-scattered) component, which is less attenuated

and takes over at large distances. The transition is accompanied by substantial 0

beam broadening. The comparison of theory and experiments indicates, furthermore,

that the parameter x is close to unity and that cS > > In other words, forward

scattering seems to be strong and scattering seems to dominate over absorption.

2
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11 . TIhEORY

1. Fundamental s

The electromagnetic field in a random medium of scatterers can be split into

two parts, the coherent component and the incoherent component. The coherent comi-

ponent, is the average field which at any point in space has a well .defined direction

of propagation and a wel -defined polarization. This component decreases due to

both absorption and scatter, and its attenuation rate is compar'atively high. The

incoherent component is the zero-mean field. It is generated by the scattering of

the coherent component and consists of many wave trains propagating in various di-

rections. Hence, at any point in space, the incoherent component does not have a

unique direction of propagation but is characterized by a directional spectrum. In

transport theory, it is assumed that the constituent wave trains are uncorrelated

in phase and add in power. The incoherent component decreases at a slower rate

than the coherent component since it is attenuated due to absorption only (though

over an increased path length) while it scatters into itself. Scattering of the

incoherent component reproduces the incoherent component. In general, this field

component is partially depolarized.

While thle coherent component will dominate at short distances from a coherent

source, the incoherent component takes over at large di5tances, leading Lo a re-.

duced attenuation rate, significant beam broadening, and depolarization. The co--

herent and incoherent field components •re powerwise orthegonal. If "E is the elec-

tric field strength in) a random medium, then the average field intensity is given

by

<r..*> = <T><e> + <AF*AF*>
wi th IE T <-C->

In other words, the total intensity is the suM of the intensities of the coherent

and incoherent field components.

The fundamental quantity used in transport theory is the specific intensity

I(r,§) which is defined as the power per unit area and petr unit so01id angle propa-

*qrting at point F into the direction T:
S I (i-,-) dP(Y,T±(1

((a (M

Here, da is thle area of the surface celement (at point P, normal to the unit

vector -s, and dý2 is the differenLial of the solid angle Q? centered about iF; see

3
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Fig. 1. Definition (1) apill is to time har,!onic fields in a time independent ran-

(oll) med ium. the case considered here. (Wind induced motion in woods and fore',.t is

negli ibly slow compared to the travel times of EM sionals. ) The specific inten-

sity can be ued to characterize both the cohlcrent and incoherent field components. ,

Il the cas'. of the coherent component. which has a unique direction of propagation,

I takes the form of a 6-function in T.

The transport: equation L3], the basic equation of the theory of radiative

energy transfer, is obtained by formlulating thle power conservation theorem in termns

of the specific intensity I. Consider the cylindrical volume dV = da-dl of Fig. 2,

which is centered at point V and whose axis has the direction of the unit vector S.

Radiation with the specific intensity I (i,) passing through this volume will vary

because of two effects:

(1) Absorption and scattering by the random medium will reduce the

power propagating in the direction T. The specific intensity

will decrease by tihe amount

dlI - (uA fo ) I(F,0) ,l (2)

wilere 'A is the absorption cross section per unit volume of

" ..... .. . ..d .. -ildo . . ... an, (t O I 'I.. c. L) P I ross Sectioll

per volume. In general , both uA and oS tepee(l on,

(2) A fraction of the power propagating in other directions s-

will be redirected into the direction -. by scattering with-,

4n the volume element dV. This effect will increase I (V-,•)

by an amount which is determined by the scatter characteris-

tic* of the medium I)(TT'). 'he increase of I(F,-) is given

by

dI 2 = -o /jp(Rf-) I(iJ) dQ' dl (3)

4i1

where the integrItion is performed over all spatial

directions "T' and p is assumed normalized such that

f,' p(s,s') d ' (4) P4,i J, "

*In transport theory p(s,§") is usually called the "phase function" of the scatter
medium, though it is not related in any way to the phases of the electric or mag-
netic field strengths.

4
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Similar to a and a,, the scatter characteristic, in general,
will be a function off. Reciprocity requires that p is sym-

metric in i and •:

(5)

The total variation of the specific intensity i over the length dl of the
volume element dV is thA sum of d1I arid d12 :

dl V-[grad I(W,-)I dl = dlI + dl 2

Hence, with Equations (2) and (3):

s-.grad l(ig) + (GA + OS) l(g,•)
0S Jl (6)

411. .- '

Equation (6) is the transport equation in its scalar formulation. A forcing
term which usually appears on the right side of this equation is omitted here since

we will assume that all sources are located outside the random medium. More pre-
cisely, we shall assume that the transmit antenna is situated outside the forest

at a certain distance from the forest-to-air interface while the receive antenna is

placed within the forested region. Reciprocity insures that the same results will
be obtained when transmitter and receiver are interchanged.

S. Formulation of the Problem

In analyzing n-m-wave propagation in woods and forests, we use a simple model
which is illustrated in Fig. 3. A forest halfspace is separated by a planar in-
terface from an air halfspace. The forest is characterized as a statistically
homogeneous medium of random scatterers. In other words, it is assumed that OA

0 and p do not vary with F and are the same at every point in the medium. Further-

liore, we assume that the phase function p depends only on the scatter angle y
arc cos (g.-) subtended by the directions and V. Since, in a forest, all scat-
ter elements are large compared to nun-wavelengths, strong forword scattering will

occur and D is assumed to consist of a narrow Gaussian forward lobe superimposed

over an isotropic background, i.e.,

2 )2
(C )2 (7)

Ay +(1a

7
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The function p(y) is indicated in Fig. 4. The width of the forward lobe Ay

is assunimd to be <<-, and a is the ratio of the forward scattered ana the total

scattered power. it is easily verified that p(y) satisfies Equation (4).

The transmitter ir. the air halfspace is assumed to be sufficiently far away

from the edge of the forest so that the field incident upon the air-to-forest in-

terface can be described as a plane wave. Fhis plane wave may be impinging nor-

"'ally or at an oblique angle. The coordinate system is indicated in Fig. 3. In

particular, Z is the coordinate normal to the interface which is assumed to coin-

cide with the plane Z = 0; 0 is the angie counted from the positive Z-direction;

and + is the projected angle in planes Z = constant.

With the above assumptions, the specific intensity I in the forest medium

will depend on the coordinate Z and the angles 0 and 4 only, but it is independent

of the cross-sectional coordinates x and y. The transport equation (6) then re-

duces to

cos 0 - (Z; 0,0) + (UA + US) I(Z; 0,6))

0z A21t ITT,

°S i''(8a) ---.

7 tJJ p(y) I(Z; 08,ý') sin VdO'dg ..)

0 0
for Z > 0

where

cos y = cos ('-4<) sin 0 s~in 0' + cos 0 cos 0' (8b)

In the plane Z = 0, I is determined by the incident plane wave (for oll for-

ward directions). Hence, we have the boundary condition

l(0;6,0) = S sino 6(4- s) for 0 < 0 < r (ga)

The symbol 6 denotes the well known 6-function. Sp1, 0 and qp are the

Poynting vector and the propagation angles of the incident wave. Finally, since

the medium is not only scattering but also dissipative, I must vanish at infinity,
i.e.,.,-

I (Z; 0,') 0 for Z -o (9b)

Equations (8) and (9) provide the transport theory description of the forest

model considered here; the equations permit a unique solution of the problem.

9---------- '_...,
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Mathematically speaking, Equations (8) and (9) formulate the problem in

terms of a homogeneous integro-differential equation with an inhomogeneous bound-

ary condition. By a simple transformation, the problem may be reformulated as an

inhomogeneous equation with a homogeneous boundary condition. The transformation

is discussed here since it provides additional physical insight. We split the

specific intensity I into two parts [31:

I(z,0,p) = 'ri (z; a,@) + 1d (z -,e) (10)

where Iri is called the reduced incident intensity and Id the diffuse intensity

[3]. Iri is chosen to satisfy the boundary condition in the plane z = 0 and the

transport equation (8a) with the interaction term on the right side suppressed,

'DI

1i.e..

Iri (0;0,9) -- Sp, .....sin-- Iq(-@P ) for 0 <e0< - (lla) • •.".

cost) , -

c + (c A +OS) Iri 0 for z > 0 (11b)

These equdtions can be solved in closed form:

Iri (Z; 0,.a) = S exp{----o- ,--z1 sinpJ6(d-dP)
sie COOpp (12)

for Z > 0

The diffuse intensity then has to satisfy the equations;

Id (0;9,q) = 0 for 0 < 0 . , 7 Z 0 (13a)

Id(~~4- for z 4(13b)

d (z;", 0

cose s Zý + ((a + oS) 'd

=- I- ff p (y) 'd (Z; 0,9 ) sin O !dE "d," _.

0 0
OA+US (13c)

+ co s Ofoz:-1"i-:
SP P(Yfor Z > 0

;11

IT =
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with cos Y= cos ()-€p) sin a sine + cos 0 cos O (13d)
p p p

The second term (forcing item) on the right side of Equation (13c) is the contri-

bution of 'ri to the interaction integral.

Evidently, the reduced incident intensity Ir is the continuation of the

incident plane wave into the random medium where its magnitude decreases exponen-
tially with distance because of absorption and scattering. Similar to the inci-
dent plane wave, Iri has a well-defined direction of propagation; it can be con-
sidered as the coherent field component, i.e., as the specific intensity of the
average field.

The diffuse intensity Id' on the other hand, can be interpreted as the in-
coherent field component, i.e., it represents the specific intensity of the zero-
mean field. The incoherent component is generated by the scattering of the co-
herent component as represented by the inhomogeneous term in Equation (13c). The

energy flow of Id directed into the scatter medium is zero in the interface plane
Z = 0 where no scattering of the coherent component has taken place as yet. This
is formulated by boundary condition (13a).

Before proceeding to solve E.,uations (13), the problem of characterizing
the polarization properties of electromagnetic fields in random media is briefly

discussed here. The coherent component has the same well-defined polarization as .

the incident plane wave. The incoherent component, on the other hand, is in gen-

eral, partially depolarized. This means that, in actuality, the diffuse component
should be represented in terms of the four Stokes parameters and the phase

function p in terms of a 4 x 4 element Stokes matrix, which would result in a form-
ulation of the radiative energy transfer problem in a forest in terms of four

coupled integro-differential equations.

However, if reasonable assumptions are made concerning the scatter propý

erties of the forest medium, the Stokes matrix can be simplified and the equation
for the first Stokes parameter becomes decoupled from the remaining three
equations. The first Stokes parameter is of particular interest since it repre-

sents the sum of the intensities associated with two orthogonal polarizations,
i.e., it represents the total intensity of the incoherent component at any point .

in space. The de'ouplcd equat.on for this first Stokes parameter takes the form
of the scalar transport equation considered here (Equations (13)) and permits

determination of the range dependence and beam broadening of EM-waves traveling

through vegetation. Study of this equation, therefore, appears well justified,

12
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although an investigation of depolarization effects would require consideration

of the three remaining equations as well

The conditions under which decoupling of the equation for the first Stokes

parameter occurs can be expressed in terms of the co-polarized and cross-polar-

ized field strength components of scattered wave trains and their correlation.

Though conceptually not difficult, a detailed discussion of these conditions is

rather tedious and goes beyond the scope of this report. In physical terms, the

conditions can be stated simply by considering a wavetrain incident from direction

K' and scattered into direction §. Decoupling will occur when the total intensity

of the scattered wave train will depend only on the total intensity of the inci-

dent wave train but (when averaged over many ÷ scatter events with both -i,

and !; fixed) is independent of the polarization properties of the incident radi-

ation. It can be assumed that this condition is satisfied for rmn-waves propagat-

ing in a forest environment.

3. Solution of the Problem.

We write with Equation (7)

p'y) Otq(y) + (1 - 0) (14a)

2whore q.)(h2
q(y) = )2e "Y Ays<<n (14b) ..

Ay5  lh
is the forward lobe of the phase function p and (1%-) is the isotropic background.

To solve Equations (13), we split the diffuse intensity Id into two parts

Id(Z;0,÷) = IZ; 0,0) + 12 (Z;O) (15) -V..

where I1 is determined primarily by the forward lobe q(y) of the scatter function

and I2 is the remainder of Id which is primarily determined by the isotropic
2-d

background. Thus, Equation (13c) is separated into two equations:

- 21 IT
coso0 + (OA + Os)l -2 jIf q(y) II (Z;o'<,') sino"dO-d-'

4 0 0

A S (16a)
cisS e O~
4 1tSp e q(y

13 " '
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us

CosO -- + (GA + us) 12 - 41 q(y) 12 (Z;o') sin O'dOd'O
0 0 211 71 (16b)

+ I - a) {( - 12(Z;o-))sin odo.d-"

0 0

S A Sz
+- (1 -C0 ) S e Cos for 7 > 0

Equations(16)can be interpreted on physical grounds and can be simplified by
introducing the following approximations:

(a) Since the specif'c intensity II is generated by forward scattering
(only the forward lobe q of tne scatter characteristic appears in

Equation (16a)))it can be expected that I will be characterized by
a strong and relatively narrow peak about the incidence direction

of the primary wave, while II will be very small in other directions.
Hence, the factor cos 0 in the first term on the left side of

Equation (16a) can be replaced by cos 3 which simplifies solution
p

of this equation considerably.

(b) The specific intensity I2 is primarily determined by the isotropic

background of the scatter characteristic p and will have a broad

directional spectrum. Hence, in eval,,ating the first integral on

the right side of Equation (16b), the function q (y), which is
characterized by a narrow peak, can be treated as a 6-function.

With Equations (4) and (8b), we find:

•. ff q(y) 12 (Z;O,4y) sin O-do'dMi zI 2 (Z;t), (18a)

0 0

(c) In Appendix A, it is shown that with approximation (a)

f 1 (Z; 0,0) sinOdO( Sp exp .(S- - exp(- WA +

00 
O Csa 0p 

cosjSZ) "-p.. p0 0

(18b)
which simplifies the second integral on the right side of Equation (16b).

14
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With these approximations Equations (16a) and (16b) reduce to

2Ir + 1
5pT- + II =W 4 q(Y) Ii(-;i;I",) d•v"dp

~p YF+1 04
o -1 (19a)

4 - S pe p q(-Yp)

1 e 31V1 (191))

dT 2 2 - d , 4 4u. S2p e p

where
2 .2

cos y cos (+- l)i(p-,2 )(1-p 2)1 +

cos yp cot =( (- p )]½ + lip
,. • ,

We have introduced here the following normalizations which are in accordance with

conmion usage:

,,= cos 0 ;'";COS 0(20a)
lip Cos 0p. _..

- (O- A + s)Z (optical density)
(20b)

( (oA + ('-a) cs)Z&TZ T (1-^TW)

W (Albedo)
GA us (20c)

A + (•-T~Ls i-1W
g~ . -. I

Both I and I are assumed to satisfy the boundary conditions (13a) and (13b),
i.e.,

1 25

S = 0 0 < la < 1 . -

I ('L;PL,ý) = 0 foril (21a) ,'-..



'r=0 0 _< I < < •.

12(I ;1I) 0 for (21b)j........-(.0

Note that Equation (19b) is the well-known transport equation for isotropic
scattering. The only difference is that the scatter cross section is reduced by

imultiplication with (1-ci) (only the fraction -a of the total power scattered in
any scatter event is transferred into the isotropic background). The solution of

the isotropic transport equation depends only on the coordinates Ti and 0 (i.e., Z

and 0) but is independent of *. Hence, 12 I 2(';") as indicated already in

Equation (15). In contrast, I will, in general, depend on all three coordinates
i, P, and 4. The only exception is the case of normal incidence of the primary

plane wave (Op = 0) where full synmmetry about the Z-direction is maintained and I

is independent of @.

Solution of Equation for I

Equation (19a) is solved by the method of undetermined coefficients, that is,

by writing 11 in the form:

2 T-I11~j~ (blt + bt + b3' + -- )e(22)

where the h are unknown coefficients. Note that representation (22) already ni'-n
isfies the boundary condition (21a), that I should vanish at 'i- 0 and,•. The U

in general, are functions of p and p.

A recursion relation for these coefficients is obtained by using Equation

(22) in Equation (19a) and observing that the latter equation must be satisfied

for any r > O:
S

.b_ J (y-) (23a)14-1 Vi pp
2Ti +1

b = - m , ,"q(y) b l'(pX,) d1idqwO (23b)

So -1

m = 2,3, - - -

16



With the assumed Gaussian forward lobe q(y), Equation (14b), the recurs iori relation

can be solved in good approxiiiiation in closed form. Details are shown in Appendix

b; tile result is

b (111(- -"4 U 1 t "v q11l(Y ) (24a)
41I P

im 1,2 - - -

where .. .'O... )2 '•
4 nAYs (24b)

Thle approximation is valid for A, , the case considered here. Note that the

functions q11 have the same general form as the forward lobe q of the phase function;

but the beamwidth Ays is broadened to v'A'(s.

By combining Equations (22) and (24) vie obtain for I

S m I i
e " 11 1 II l1 I- p

(25)

with cos yp cos [ VI2)(l_ 12)]½ + till
pp p p

M is a suitably chosen upper limit. The general behavior of Il, as expressed by

Equation (25), is in accordance with expectation. For small distances into the

scatter medium, the first term of the sum dominates, which means that I increases

linearily with t,and its directional spectrum is narrow. (11 is generated by for-

ward scattering of the coherent field component in accordance with the scatter

function q(yp)).
p

As t increases, I reaches a maximum and then decreases again because of the

exponential factor exp (-i/ P). Simultaneously, higher order terms in the sum on

the right side of Equation (25) become significant, which has tile effect that (a)

the attenuation rate is slowed down and (b) beam broadening occurs.

The reduction of the attenuation rate can be determined explicitly by con-

sidering the forward direction where yp = 0. For this direction the sunmilation can

be performed in closed form. We have

17
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As before, it is assumed that M is sufficiently large so that the value of I no

longer changes when M is increased. lhe minimuim required M will increase with T.

Solution of Equation for 12

Equation (19b) for 12 is the well-known transport equation for isotropic

scattering. The scatter cross section per volume which appears in this equation

is determined by the isotropic background of the phase function and is given by

(i-,I)os 'This modification does not change the mathematical character of the

equation.

A number of solution methods for the isotropic transport equation are avail-

able in the literature; see, for example, References [3-6]. Numerous additionala I

references can be found in [3]. In the present paper we use a moment method ap-

proach [61 which expands the .- dependence of 12 into a series of overlapping tri-

angular basis functions. These functions, F (X, are defined as indicated in Fig. 5.n
The range -1 p K + i is subdivided into N intervals ...

'n-1 < ,. .n n -- 1,2 .... N (27a)

where N is assumed to be odd and jn is Jefined by

11 cos (1- !)71 - cos •H" n = 0,1,2 .... N (27b)

I hss:

0 for _ I, _ Ii1

*qi•n n-.•i"

F (28a)
11• £ ' -IL< 1

n+ II
0 1 n+1 1 ' N-1

n = 1,2 .... N-I -.-

19 "''
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The "boundary" functions F (x) and F have the shape of half-triangles and are

defined by

+1 i~ for -

F0 ) 1_ (28b)
,*0

•i~ifor -1 <_ P _<_ Vl >-:.

FoN(P) = <+(28c)

N-10 - - < + _

Expansion of the specific intensity 12 into the functions Fn(i) yields

N "
12 (T,) = 1: an F n(P) (29a)

n=o

where the expar ion coefficients

an( ) 12 (i;jn) 0,1,2 .... N (29a)

are the values of 12 at p = In other words, Equation (29a) replaces 12 by a
K piecewise linear approximation in i, which is exact at the points p = n ..-

With Equation (29a), the transport equation (19b) reduces to a system of

coupled differential equations of the first order in "

dan +a NPa +• a E (" r ak) + Sp .

1 k=o k ( kaS+ e j (30a)

n = 01, N N

where
Ssin s(-)Sin (Tk)
2 k+ 1 k -

P f Fk( )dji for k 1,2, ....N-1 (30b)

• 1 ( i ) = - - _ sin 2  (. .

for k = O,N

21
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We have assumed, furthermore, that the direction-cosine V of the incident

plane wave coincides with one of the "i values (n = j); for normal incidence, in

particular, we have j = N. Equations (30), a linear system of coupled differential

equations of the first order, can be solved by assuming an exponential i-'dependence

of a It is straightfoward to show that the general solution takes the form:n*

e ujN A k S -
e + _"K_ e e} k

an(• = 2•-{ - pa n n k=o 1 ...-.n
p. 1
J S k

(31)

n = 0,1,2 .... N

-I for n =j
°jn= 0 n j

The first term within the parentheses is a particular solution of the inhomo-

geneous equation, the sum term is the general solution of the homogeneous equation.

The coefficients An are unknown amplitudes which have to be determined from the

boundary conditions. The attenuation coefficients Sk are solutions of the char-
acteristic equation

2 nn1- 1 (32)

which has to be solved numerically. Useful insight into the general behavior of

the Sk spectrum can be gained by plotting the left side of Equation (32) as a
function of S. From Equations (27b) and (30b), it can be seen that

N- - 'n N-n n

and the left side of Equation (32), L(s), is syniietric in S. The same is true, of

course, for the right side R(S) = 1.

In Fig. 6, L(S) is sketched for N = 9. The function has N + 1 poles,

located at the points S = j'n" In the regions between adjacent poles L(S) varies

f -on .,• to + o. (The only exception is the interval between the two poles closest

22
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to S 0.) Therefore, L(S) crosses R(S) I 1 N-I times between -1 < S < 1. Further-

more, for S ÷ + ', we have*
N

L(S)-÷W . P =W
2 n=o

Since W 1, L(S) intersects the line R(S) = +1 twice for ISI > 1. Fig. 6

indicates the N+I solutions Sk of Equation (32) which are distributed symmetri-

cally about the point S = 0. Counting these solutions in order of ascending value,

the first N+_ eigenvalues, S .  S ara negative and would lead to a specific
0 N-1, -

intensity which increases exponentially with ý. The boundary condition at --

eliminates solutionq of this type. The remaining N+1 solutions, SN+1 ...... SN' are
2• '

positive and lead to physically meaningful results. 2

Fig. 6 shows that all Sk have magnitudes smaller than unity except for the

largest eigenvalue SN which is >1 and provides the lowest attenuation rate. The

associated term in Equation (31) is of particular interest since it determines the

asymptotic behavior of 12 at large distances into the scatter medium.

The number of eigenvalues Sk within the range 0 < S < 1 increases with N,

the order of the approximation. For N-)., the Sk form a continuous spectrum

covering the entire range from 0 to 1. The eigenvalue SN, however, remains dis-

crete and for N ÷ approaches a limiting value Sa> 1 which will be further dis-

cussed below. Numerical evaluations have shown that if N is reasonably large (21 .. -

or greater), SN approximates S closely and does not vary significantly as N is ". -

further increased.

As stated before, the boundary condition at rT- eliminates all expansion

terms in Equation (31) associated with negative eigenvalues Sk. We have

Ak = 0 for k = 1 .... N-i (33a)

The remaining amplitudes AN+ ...... AN are determined by the boundary condition at

0 0. By applying Equation (21b) to Equations (29) and (31) the following system

N*From Fig. 5, it is easy to see that N F () = 1 for -1 < < +1.
n

n=o+1
N " N

Hence E P n Z F(jj)dpj 2.
n=o n=o

-2
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of linear equations is obtained for these amplitudes:

N A

kN+= -1 in for n .N (33b)---- S 1 -n P . 2 • --

Sk

This system has to be solved by computer. With the A and S determined, the
k k

solution for 12 takes the final form

Sj F. +.j_ N F n(pa) "-.-. I-'
1 p) • e +_IAke k ] } (34)

21r P. 1- ":n

K

for t> 0, -1 <p < +1

pj = cos Op pp

It is instructive to examine the behavior of 12 at small and very large "-

For small ', 12 can be approximated by

f p
e -e for 0 < j= cos 0 <. 1

S pp
I2 _; S (35)

S e .-P.]

S I-Lp -1 <_.=Cos <0

This so-called first order multiple scattering approximation is obtained if

Equation (19b) is solved with the integral term on the right side suppressed [3].

Equation (35) shows that 12 is zero at the air-forest interface for 0 < o < 7T, as
-2

required by boundary condition (21b). As i is increased, 12 at first increases

linearly with distance (12 is generated by scattering of the coherent field com-

ponent I in this region) but then reaches a maximum and decreases again because

of absorption in the scatter medium. At very large distances, 12 is determined

by the asymptotic solution [31:

25



Ta

I2 (T;1 :2 Aa fa (i,) ed for T - ' (36a)
27Tr

-1 <1 cos 0 < +1.

where

S -1
fa(pJ) Sa- (36b) " -

a

and Sa is determined by the equation

Sa+1

2a

The quantities Sa, and fa are shown in Figs. 7 and 8 as functions ef W. The •

asymptotic amplitude A a depends on the boundary conditions and is plotted versus W

in Fig. 9 for the conditions shown in Equation (21b). The figures show that in a

strongly scattering medium with W close to unity, the asymptotic attenuation rate

l/Sa is low, the amplitude Aa is substantial, and the directional spectrum fa is ,

wide. Experimental results indicate that the forest environment has these char-

acteristics and is a strongly scattering medium at mm-wave lengths. In Appendix C

it is shown that the expansion term in Equation (34) associated with the largest

eigenvalue SN converges towards Equations (36) as N -• w. _

A final remark is concerned with backscattering out of the forest medium

into the air halfspace. While nri is zero and 11 is negligible in the range of

the backscatter directions -1 < = cos 0 < 0, 1 is different from zero in this

range. Sackscatter into the air halfspace is determined by the i-spectrum of 12 ,

at 0. = 0 With Equation (35), we have

S -1
2 (0;1j) = p_ W for -1< vt = cos 0 < 0

4Or 1-uj__

1~p
Apparently, side scatter (0 = 900) is moderately stronger than direct back-

scatter (o = 1800). Note that the backscatter radiation is generated by the

(isotropic) scattering within the forest medium; but it is not caused by reflection 4

of the incident energy at the air-to-forest interface (which is insignificant). It

is a volume rather than a surface effect.

26
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4. Power Received by _Hi~l Directive Antea".na

The present theory assumes that the forest halfspace is illuminated by a

plane wave incident from the air halfspace. This situation can be approximated by

locating the transmit antenna at a sufficiently large distance from the edge of

the forest. We assume, furthermore, that the receive antenna, which is located in-

side the vegetated area, is a highly directive antenna of narrow beanwidth. This

is in accordance with the experiments to which the theory will be compared in the -

next section. We characterize the receiving antenna by its power radiation pattern

GR (YR) where YR is the angle which the direction of observation 0,0 includes with

the pointing direction of the antenna axis 0 RV@R (main beam direction); see Fig.

10. Evidently

Cos Y R cos 04-R) sin 0 sin OR + cos 0 cos OR (37a) .

We normalize GR such that

271 IT

, rG R(YR) sin 0 d od4 = 47T (37b) .0

The directivity gain of the antenna is then given by GR(O). The power PR

received by the antenna is determined from the well-known relation Aeff - U G for

the effective receiving cross section of a perfectly matched antenna of directivity

G. Thus

27T +1

R , R= V f G I (T; i,) dIjd+ (38)
4 -1 .. ".

where X is the wavelength. We have used here the normalized coordinates

T = (aA + OS) Z, "R = cos OR and i = cos 0. PR, of course, depends )n the location

and orientation of the antenna.

From the analytical viewpoint, it is convenient to assume a Gaussian

radiation pattern

(_R )2

( (2 2 AYR (39)GR(YR) R

where AYR is the beamwidth of the antenna. The receive antennas used
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0
in the experiments had a very small beantwidth of 1.2 and we shall assume in the

numerical evaluation that the width of the forward scatter lobe of the phase

function of the medium, AyS, exceeds AyR by a factor of 3-10. (The aperture size

of the test antennas was significantly larger than the cross section of most scat-

ter objects in a forest environment with the exception, perhaps of tree trunks.)
Using Equations (12), (26) and (34) for I and I2• respectively, we obtain

for the received power

PR(T4;aR"R) = e {YRP 2 -"
P exp P-(-P5)..!

PMax AR lp
2 

T'AyR lap 11p -

+ { [e - e q N-O(YRp)

T M 1 w(40a)
III! It 117. [ (YPR)- YPR)1I

+ e 111 I P

2 N - Fn(p R)

+ AYR -e j Fj(-.) + [Ak ke
2 Sk1

YPR 2

A +m
4 yR yS

where qI, (ypR) = e (40b)YP) Ay2 + mAy•• ... a
yR -" "

(400):
cos YPR cos (Wp-OR1-1 P+-4 ! +(4c)

We have normalized the received power by division with the maximum power
P max which is received if the antenna is placed at the forest boundary x = 0 and

is aligned with the incident radiation, i.e., 6R =p, O R - " Evidently

X 2 X 2 2

max ,(O; 1p0p) -4, (R( P = 4 (2r') Sp.

The first term on the right side of Equation (40a) is the contribution of Iri

to the received power, the second and third terms are those due to II an(d 1 2 The

integrals occuring in the contribution of I have been evaluated by using Equation

32
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(B.6), and the integrals in the term due to 12 were solved by regarding GR as a
6-function. This is justified since 12 is inidependent of I) and changes very slowly

with p as compared to GR, The normalized variables are defined by Equations (20).

At small distances into the random medium, for t in the order of 3 or smaller,

tire coherent field component domine.tes ana P11/Pmax is in good approximation given

by the first term of Equation (40):

(PR)2 PR
p p- R(YaR (41) i

Max

In this region, the angular dependence of PR is determined by the radiation

pattern of the receiving antennas and the attenuation rate T/Z 0 A + 0 is com-

paratively high. Both attenuation and scatter reduce the power of coherent comn-

pollent.

In the range of intermediate distances (-r in tile order of 10), the forward
scattered component 11 dominates and PR is primarily determined by the second terwl

in Equation (40). In this region, the beamwidth gradually broaaens as higher and
higher terms in the sum over M become significant while the attenuation rate de-
creases from "/Z -- S to i A (1-a) 0S. 1 s attenuated due to ab-
sorption and scattering, but scattering into the isotropic background only.

At large i , the received power is primarily determined by the contribution

of I2- i.e., by the Iat term ini Equation (40) Asymptotical ly, P R is with Equa-
Lion (36a) given by

R 2Aa f (p, ) e a fc l . (42)
G- - (o) a -. .'max G

Aa, f (p) and ISa are shown in Figs. / to 9 as functions of W. For largea a a
W 1, the practically interesting case. the directional spectruml is broad and

I/-a is small so that tile asymptotic attenuation rate c7/(Z-Sa) (o * (1.-c)Os)/a
a ~~a) -('A . "1OS 'ýa

is significantly reduced from the initial value of oA t- ( The int-nsi ty 1? de-
creases essentially due to absorlption only (though over an extended path length
because of i1ul til)le scatteri ng); but it scatters into itself.

In summnary: While a mm wave beamIl transmini tted through a forest will be highly
directive and strongly attenuated at short distances, -t will transform into a
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radiation field of large beanuidth attenuated at a much reduced rate at large dis-.
tances. These theo'etical predictions are in a(reement with expectation and have

been confirmed by the experiments.

A similar range dependence in woods and forests, i.e., a transition froim a

09igh attenuation rate at short distances to a much lower rate at large distances

has also been observed at much lower frequencies, i.e., for propagation of VIir
signals through dense vegetation (jungles). The underlying mechanism, however,

is completely different. The change of attenuation rate of VHF signals is attrib-

uted to the so-called up-over-down propagation mechanism where a lateral wave is

excited which travels along the horizontal boundary surface between the forest

canopy and the air region above it (Tamir theory). Since this wave propagates

mostly in the air region, it is much less attenuated than the direct-wave travel-

"l ing through the forest mediuml.

However, the lateral wave has a substantial launching loss. Hence, at short

distances, the power transfer between two antennas located in the jungle is deter-

mined by the direct wave and the attenuation increases rapidly with antenna

spacing. It large distances, on the other hand, the lateral wave will dominate

and the attenuation rate is significantly reduced. Note that the effect is deter-

mined by the coherent field compoeent alone while the incoherent component is

negligible at wavelengths in the VHF region. In contrast, in the irn-wave region,

the incoherent component is significant in forests, and, as explained above, will

dominate at large distances. The decreasing attenuation rate is caused by the

interplay between this component and the more strongly attenuated coherent compo-

nent. A lateral wave supported by the canopy-to-air interface should not be ex--

pected at uimn-wave length. The interface is extremely rough in the iumi scale.
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I11. NUMERICAL EVALUATION

A computer program for the evaluation of Equation (40) has been written.

While the first and second terms of this equation (which represent the contribution

of Iri andl appear in explicit form, the third term contains the eigenvalues Sk

and amplitudes Ak of I2. which have to be determined by numerical solution of the

characteristic Equation (32) and the linear system (33b), respectively. A null

finding procedure and a matrix inversion subroutine for the solution of these -

equations are included in the program.

Numerical results are shown in Figs. 11 through 20. Table I summarizes the

parameter values applying to the various curvc.s. Throughout it is assumed that the

receiving antenna has the same 3 dB beamwidth of 1.20 as the antenna used in the

experimental study, which means that*

AYR = 0.70 = 0.012 rad

Furthermore, we assume that the 3 dB width of the forward scatter lobe of the

phase function of the scatter medium is 60, or

AYs = 3.5 = 0.060 rad

The quantity Q appearing in the figures is the normalized received power expressed

in dB, i.e., Q =10 )

max

The distance into the forest halfspace is expressed in terms of the normalized

vegetation depth T = (a + Cs)Z as measured from the air-to-forest interface; T is

sometimes referred to as "optical distance."

Discussion

Figs. 11-13 show the range dependence of the received power, i.e., Q = Q(T)

for various values of W and a. It is assumed here that the primary plane wave is

incident normal to the air-to-forest interface (plane Z = 0) and that the receive

antenna is pointed into the direction of this wave; thus, e= 0 . The curves

demonstrate the change in attenuation rate from a high value at small 'r to a lower

value at lIrge "r. The effect is pronounced, in particular, for strongly scatter-
ing media with a5>o where the albedo W is close to unity. Increasing a•, the...-•

• *is the angle counted from the antenna axis at which the mainlobe of the power
ra iation pattern of the antenna is down by a factor l/e; see Equation (39).

This angle is related to the 3 dB beamwidth of the antenna by AYR 0.6 A Y3dB.
AyS is similarily defined.

35 (text continues on page 50)
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ratio of the forward scattered power to the total scattered power, has a similar

effect, which is easy to understand since the attenuation rates of the field inten-

sity components 11 and 129 which dominate at large T, are proportional to (I-aW)

in this region.

Typically, for W = 0.75 and a 0.8, the coherent field component 'ri oro-

vides the dominant contribution to the received power in the range 0 < -t < 7,

while 11 is the dominant component in the range 7 < -t < 50, and 12 in the range

- > 50, If W is increased, i.e., for W = 0.95, a = 0.8, the changeover occurs

earlier, i.e., at r = 5 rather than 7, and 30 rather than 50.

The curves Q =Q( of Figs. 14 to 18 show the dependence of the received

power on the pointing direction of the receiving antenna. It is assumed here that . -

0Ithe antenna is placed at various vegetation depths "r where it performs a full 3600

scan. As before, it is assumed that the primary plane wave is normally incident

upon the air-to-forest interface. In this case, Q depends on 0R only but is inde-

pendent of 4R Figs. 14b, 16b and 18b show Q (OR) in an expanded OR-scale.

For T = 0, when the receiving antenna is positioned in the interface plane,

the curves Q (O0) show the Gaussian radiation pattern of the receiving antenna.

(The incident field, in this case, is an unperturbed plane wave.) This holds for

the two forward quadrants 0 <. <. 900 and 2700 < OR < 3600. In the range of back,

ward directions, 900 <_ 0R 2700, the antenna receives the backscatter radiation

emerging from the forest. The figures show that this backscatter radiation has a

rathcr uniform directional distribution with sidescatter moderately higher than

direct backscatter, i.e., I..,.

Q ( Q(-•-) Q(n) for T = 0

As T is increased, beam broadening occurs. For small -r = 0.1 and 0.3, the

coherent component remains dominant, as indicated by the narrow spike about 0R = 0.

But the incoherent component produces a broad tail consisting of a peak of moderate

height and width extending to about = 100, and a very broad back scatter spectrum.

The peak is determined by II and the background by I. II depends on AyS, the

width of the forward lobe of the phase function; if A yS would be increased from 3.50,

the value assumed here, to 70, the peak corresponding to I] would decrease in

height by 6 dB and increase in width to about 0 = 200. For 'r - 3 the coherent comn-
R

ponent is still clearly visible, but for [ = 10 it has all but disappeared within

the incoherent component. At ' = 30, (Fig. 18), the incoherent component has
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taken over completely, the signal level has dropped significantly, and the beam has

broadened out substantially.

For 2 O < 900, i.e., in the range of forward directions away from the
spike of the coherent component, the received power level Q first increases with r,

up to about T = 3, and then decreases again. This is explained by the fact that

the incoherent component, which determines the r'eceived power in this e-region, is

generated by the scattering of the coherent component in the range of small C, but,

after reaching a maximum, decreases again because of absorption. The maximum

occurs near T. = .(1-oW) = 1 which roughly corresponds to T = 3 for most of the a

and W values considered here.

The receiving antenna assumed here is an idealized antenna radiating a narrow

mainbeam but no sidelobes. Practical antennas produce sidelobes and the measured

directional spectrum Q (0h) will be influenced by the sidelobe structure of the

test antenna. It is likely that such distortions will obscure some of the details

of the directional spectrum of 11 and 12; in particular, those at a level of more

than 30 or 40 dB below the main peak.

Figs. 19 and 20 show the range dependence and directional spectrum of the re-

ceived power for the case that the primary wave is incident under an oblique angle,

i.e., 0p = 450, qp = 0. In calculating the range dependence curves of Fig. 19, it
was assumed that the receiving antenna is pointed into the direction of the inci-

dent wave such that R = 450 R 0.* The figures show the same general behavior

of Q, the normalized received power, as those for normal incidence, with the ex-
0ception that in Fig. 20 the maximum of the received power occurs at 0R - 45 rather

0Rthan 00. A second difference may be seen by comparison of Figs. 19 and 12, which

show the range dependence of Q, at oblique and normal incidence, for the same

values of c. and W. For W = 0.5, when absorption is strong, the attenuation rate

for oblique incidence is significantly above that for normal incidence. This is

due to the fact that in the case of oblique incidence the wave trains received at
a given point u in the medium have traveled a path which, in effect, is by a factor

(coS op) longer than in the case of normal incidence. Hence, the attenuation is
that accumulated over a longer path. (Note that the receive antenna is a narrow

beam antenna pointed into the direction 0R = p so that it receives primarily for-

ward scattered wave trains.) The effect is clearly visible in the r-range where

the "directive" field components ri and I dominate, but it levels off in the

*The curves in Fig. 19 should start at Q = 0 dB for T 0. The deviation is due to
a computational quantization error.
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range of very large T where 12 is the strongest field component. 12 propagates by

omnidirectional scattering and its magnitude at any point T is primarily determined

by the constituent wave trains having traveled along the shortest paths, i.e.,

along those directed normally into the forest medium. (But the directional spec--

trum of 12 is very broad so that the received power does not depend significantly

on antenna pointing.)

IV. EXPERIMENTS

Systematic test series on mm-wave propagation in woods and forests were con-

ducted by Violette, Espeland, et al.* Detailed reports on these studies have been

published recently [1, 2]. The following discussion draws strongly from these

reports.

1. Description of Experiments

The experiments were conducted at three frequencies simultaneously, i.e., at

9.6, 28.8 and 57.6 GHz. The first of these frequencies is at X-band; the two remain-

ing frequencies are close to the 35 and 60 GHz bands which are primarily of inter- P

est in tactical communication. The transmit antennas have a comparatively broad

beamwidth of 100 and provide wide angle illumination of the test area. The re-

ceiving antennas have narrow beamwidth, i.e., 40 at X-band and 1.20 at the two mm- I
wave frequencies. In the numerical evaluation of the theory, the 1.20 beamwidth

was assumed for the receive antenna.

The antennas are linearily polarized and in the experiments of interest here

were operated in co-polarization. The experiments have shown that at mm-wave

frequencies, the propagation conditions in vegetation are practically the same for

vertical and horizontal polarization so that the direction of polarization is of no

consequence. This was also assumed in the theory. There is, however, the follow-

ing difference. The theory is based on the scalar transport equation which means

that the received power is obtained as the total power intercepted from both the

co-polarized and cross-polarized field components. In the experiments, which util-

ize linearily polarized antennas, only the copolarized component contributes to

the received power. Cross-polarization experiments have shown, however, that over

the distances considered here, imm-wave beams do not become fully depolarized in

vegetation and that the cross-polarized component remains several dB below the co-

polarized component. Hence, errors due to this discrepancy of theory and experi-

ments should not exceed 1-2 dB.
*The investigators are with NTIA/TITS, US Dept. of Commerce, Boulder, CO. The ex-

periments were performed under contract with the US Army Communications-Electron-
ics Command, Fort Monmouth, NJ.
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Normally, the vegetation density in a forest will change strongly with lo-

cation and is difficult to characterize. To eliminate this uncertainty, the experi-

ments were conducted in a regularly planted, well-groomed orchard of pecan trees

(near Wichita Falls, TX) which should approximate a statistically homogeneous vege-

tation m.edium - as far as this is possible. The trees in this orchard were of

roughly equal growth they were planted in a regular square pattern spaced about

13 m apart, and individual trees had a height of approximately 10 m. Maximum vege-

tation density occured in the canopy region between 4 and 6 m above ground. The

experiments were conducted both under summer and winter conditions, i.e., with

trees in leaf and without leaves. Fig. 21 shows the test site in early April and

late August when the experiments were conducted.

The experiments which are of interest in the context of the present paper

can be described with the help of Fig. 22. The black circles in this figure indi-

cate some of the trees. The transmit antenna was located at or near the point T3A

outside the orchard at a distance of -300 m from the first row of trees. The re-
aL.L. .:,

ceive antenna was located within the orchard and was moved to various locations R3 ,

R4 , R5 , etc., as indicated in the figure. In each case, the receive antenna was

positioned at the same height as the transmit antenna, and the line-of-sight follow.,

ed a path of maximum vegetation density through one column of trees. The measure-

ments were taken at three different heights above ground, i.e., at 1 m, 4 m, and

6 in. The 4 and 6 m experiments are primarily of interest here. At each receiver

position and height, the receive antenna was first pointed towards the transmit

antenna so that its main beam direction coincided with the line-of-sight. The
0 0receive antenna then performed a scan in azimuth by +15 and in elevation by +10°.

The quantity measured was the received power at constant transmit power.

2. Experimental Results

Results applicable to this paper are shown in Figs. 23 to 26. In the first

two figures, the range dependence of the received power is plotted. The quantity

shown is the maximum of the received power observed during the azimuth and ele-

vation scans. The power is normalized to 0 dB at the edge of the orchard. Fur-

thermore, free-space path losses (R-2 dependence) and atmospheric attenuation (at

57.6 GHz) have been subtracted so that the curves show the vegetation loss only.

Because of this normalization, comparison with the theoretical results based on

the assumption of an incident plane wave seems appropriate. The abscissa scale

shows the number of trees on the line-of-sight; this number multiplied by the

tree spacing of 13 m yields the vegetation depth in meters. The solid curves

53 (text continues on page 58)
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show the summer data, the dashed curves the winter data. Apparently, leaves have a

strong effect on mu-wave attenuation. As one should expect, the attenuation in-

creases with frequency though the effect is not dramatic in the nyu-wave region. It

is evident that the experimental results confirm the theoretical prediction that

the nm-wave attenuation rate in woods decreases from a high value at small vege-

tation depths to a much smaller value at large depth, the transition between these

two regions appears to be rather sharp.

Figs. 25 and 26 show the received power as a function of the azimuth and ele-

vation scan angles. The light traces indicate the power received in free space,

i.e., the radiation pattern of the receive antenna. The figures apply to trees

without leaves, but very similar curves were recorded for trees with leaves.

Again, good qualitative agreement with theoretical predictions is observed. For

short distances into the orchard, i.e., at vegetation depths of one and three

trees, the presence of the cohere.,t component is evident by the narrow peak of the

scan pattern. At larger vegetation depths, corresponding to propagation paths

through eight and eleven trees, the coherent component has disappeared within the L

incoherent component which dominates the received power, resulting in a reduced

amplitude and substantial beam broadening.

The scintillations in the curves of Figs. 25 and 26 are interference effects

(fadings); the exact locations of the maxima and minima should vary rapidly with

antenna position so that, in an averaged curve, these fluctuations will disappear.

Since transport theory neglects interference effects, the corresponding theoretical

curves of Figs. 14 to 18 are smooth.

3. Con•parison of Theo and Ex periments

Theoretical and experimental results show the same general trends and are in

good qualitative agreement. One may now try to establish quantitative agreement

by choosing the numerical values of the four theoretical parameters AYS, aA' aS

and a, such that a "best fit" of the calculated curves to the measured curves is

achieved. At the same time, this procedure would yield order of magnitude esti-

mates for the four parameters. The procedure, however, is not without difficulties

and, as will become apparent from the discussion below, the presently available

experimental data base is not sufficiently large to arrive at definite conclusions.

It should be understood, also, that the comparison of theory and experiments in-

volves a certain amount of conjecturing since the measured curves, as opposed to

the smooth theoretical curves, show a significant amount of fluctuation. Moreover,
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the comparison has to be regarded with Caution since the theoretical model contains

a priori assumptions and strong simplifications and is not. identical with the ex-

perimental set-up. In particular, the theoretical model applies to a forest half-

space illuminated by a plane wave, while in actuality the incident beam has a

finite cross section and the trees have a finite height so that losses occur due t

to radiation into the ground and into the air region above the forest canopy; such

losses arD not accounted for in the theory.

In the following, a critical assessment is attempted in how far each of the

four theoretical parameters can be determined from the experimental data. For the

purpose of this assessment, the parameters are rewritten in the formn A yS, 'T

0A 4 Us, W1 OS/(OA + OS), and a.

(1) The width AyS of the forward lobe of the phase function determines the

(changing) beamwidth and amplitude of the It-component of the incoherent intensity,

and would have to be detenrined from the experimental curves of Figs. 25 and 26.

But these curves are not in a form to facilitate comparison with theoretical data

and no attempt is made here to specify AyS from this data. For 0he following dis-

cussion, As is not a critical quantity and we shall assume, as in the theoretical

curves of Figs. 14 to 18, that the forward lobe of the phase function has a 3 dB

beamiwidth of 60, though this value may be rather small.

(2) The extinction cross section aT determines the attenuation rate at short

distances into the random medium where the coherent component dominates. With

Equation (40), we have in this range:

-T -oFz

R max

In accordance with the experimental situation, we have assumed here that

0R 0 M 0. The relation permits one to detenrine aT fram the measured range

dependence curves of Figs. 23 and 24. Recalling that the tree spacing is 413 ii,

one finds

i 0.4 m for trees in leaf
0T 0A .oS (43a)

0.25 m- for trees without leaves
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These values correspond to the steel) initial part of the experimental curves

and are typical for both mm-wave frequencies (28.8 and 57.6 Gllz) and both heights

above groulkI (4 In and 6 m) . However, these values appear to be very high. Since,

in a forest. all scatter objects are large compared to a nym wavelength, (IT should

be close to the high frequency limit, which is obtained for Xo-, 0. In this limit, the

extinction cross section approaches the obstruction cross section per volume of

the random medium. Thus, according to Equation (43a), trees in leaf would obstruct
-40% of the planar field of view for any meter of vegetation depth, and trees with-

out leaves would lead to a 25% obstruction per meter. Although values of this mag-

nitude may occur locally, it is very unlikely that they can be regarded as repre-

sentative.

A possible explanation for these large oT values can be derived from the S

fact that in a forest environment all scatter objects are large compared to a nu11

wavelength. Behind large obstructions such as strong branches, deep shadow will

exist* and since the measurements were pp- formed over a path through maximum vege-

tation density, it is very likely thit the receiving antenna was operating within

such shadow zones. The measured date may thus indicate a higher value for a, than

one would obtain in the average, i.e., by performing similar experiments over a

number of parallel laterally offset vegetation paths (including the maximum den-

sity path) and by averaging the powers received over these paths. In transport

theory, which neglects interference effects, this averaging process is implied.

At large vegetation depths, on the other hand, deep shadow zones are not ex-

pected to exist since the incoherent. (multiscattered) component is well developed

in this region and will "fill in" any potential shadow zones. Hence, it should

be oossible to achieve good agreement between the experimental and theoretical

range dependencies at large r.

Since the above values for Uo appear to be very much on the high side,

curve fitting of tile theoretical and experimental range dependence curves was

attempted not only for these 0., values but for moderately and strongly reduced

values of o0 es well, i.e., for

0.3 mI for trees in leaf
0T = (43b)

0.2 i for trees without leaves

*Note that we are concerned here with the range of small vegetation depths where
the coherent (highly directional) component dominates and the incoherent corn- .
ponent, is not as ye s i ificatnL y d(eveloped.
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and

0.1 M for trees in leaf

oT (43b)

0.05 m for trees without leaves

Using these values, reasonable agreement should be achievable at moderate and

"large distances into woods. At short distances, discrepancies are unavoidable,

since the assumed theoretical attenuation rate of the coherent componer differs

from the measured rate.

(3) The albedo W and the ratio a of the forward scattered power to the

total scattered power were adjusted to obtain reasonable overall agreement of the

calculated and measured range dependence curves. Agreement was established simply

by trial and inspection. Figs. 27 and 28 show the results for the o T values of

Equations (43a) and (43b), respectively. In these figures the received power in

dB (vegetation loss) is plotted as a function of the normalized distance T = a Z.

The solid lines show the theoretical curves;, the experimental curves (dashed lines)

are those of Fig. 23 applying to a propagation path at a height of 4 m above ground.

At large T, good overall agreement ` tween the theoretical and experimental

range dependence is obtained in particu.i, in Fig. 28. At small T, the agreemenit

is reasonable for trees without leaves; for trees with leaves, the measured vege-

tation loss is significantly higher than the theoretical loss, in particular near

the sharp bend of the experimental curve.

Both figures indicate that the parameters W and a must be chosen close to

unity to achieve reasonable agreement, i.e.,

W, 0.9 to 0.95.

For the small aT values of Equation (43b), conclusive results were difficult

to obtain since the range of smail 'r, where significant deviations between the

theoretical and experimental curves occur, is now extended and the range of laroe
-r where good agreement can be achieved in principle, is correspondingly reduced.,..-•

However, it appears that, in this case, the conditions on W and a are somewhat re-

laxed leading to values of 0.8 to0.95 for W and 0.6 to0.9 for (X (where the larger

W values correspond to the smaller a values and vice versa).

It is evident that these results are preliminary and do not lead to definite

conclusions concerning the numerical values to be assigned to the four theoretical
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parameters. It appears, however, that both a and W should not be too far away from

unity which would indicate that forward scattering is a significant effect for ram-

wave propagation in woods and forests, and that scattering exceeds absorption by a

substantial margin.

V. CONCLUSIONS

A theoretical approach for the study of mm-wave propagation in woods and for-

est has been derived and compared to experimental data obtained by an independent

iviestigation [1, 2]. The theory models the vegetation environment as a statisti- .

cally homogeneous random medium of scatterers characterized by a scatter function

(phase function) with a narrow forward lobe and an isotropic background. The scalar

transport equation has been used to determine both the coherent and the incoherent

field intensities in this medium; the particular problem solved is that of a vege-

tation halfspace illuminated by a plane wave incident from the air halfspace. The

propagation and scatter properties of the vegetation medium are characterized by

four parameters which, in principle, can be determined by a comparison of theoreti-

cal and experimental results. Numerical evaluations have provided information on

the range dependence of mm-waves in woods and forests, and on beam broadening

effects.

Comparison with measured data has shown good qualitative agreement between

theory and experiments. Both indicate that the attenuation rate of mm waves in

woods and forests decreases from a high value at small distances into the medium

to a lower value at large distances, and that significant beam broadening occurs,

resulting in a very broad bearimidth at large vegetation depths. Reasonably good

quantitative agreement between experimental and theoretical results can be estab-

lished at large vegetation depths (by appropriate adjustment of the parameters of

the theoretical model). But the experimental data indicates a higher attenuation

rate at shGrt distances into woods than can be accommodated by the present theory.

The comparison between theory and experiments has not yielded conclusive quanti-

tative results at the present stage; but it indicates that the forest environment

at mm wavelength is a strongly scattering medium whose scatter cross section per

volume substantially exceeds the absorption cross section and that strong forward

scattering occurs, which is expectcu since all scatter objects have large dimen-

sions compared to a wi wavelength.

wr study is needed in the following areas:

I6
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(1) The very high attenuation rate measured at short distances into woods

and the rather sharp transition to a region of lower attenuation rate, which

occurs after transmission through a few trees, requires explanation.

(2) More conclusive (experimental or theoretical) information is needed on

the numerical values to be assigned to the four (averaged) parameters by which the

theory characterizes the forest environment at mm wavelength. These parameters in-

clude the scatter cross section per volume, the absorption cross section per volume,

the width of the forward lobe of the scatter characteristic (phase function), and

the ratio of the forward scattered power to the total scattered power. In more

general terms, the characterization of the forest environment at mm wavelengths by

a set of suitably defined, measurable electrical parameters is a very important,

but up to now, unresolved problem. The theory presented here is a first attempt

in this direction.

(3) The present theory deals with the simple model of a forest halfspace

with a planar boundary surface illuminated by a plane wave. A more realistic model .

would replace the forest halfspace by a two-layer horizontal slab model over a

ground plane with suitably defined absorption and scattering properties. The model

is indicated in Fig. 29. Furthermore, a vector transport equation formulation of

the problem is needed if depolarization effects of mm waves in forests are to be A
included in the theory. Analytical/numerical difficulties in treating a model of

this type, however, may be formidable.

6A
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FIGURE 29: Advanced Theoretical Model for the Analysis of
Millimeter Wave Propagation in Woods and Forests.
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APPENDIX A

Energy Density Associated with I1.

The integral

21:Tl

UI(Z) -f II(Z;O,0) sin 0 d 9 d € (A.1)

0 0

which appears on the right side of Equation (16b) can be evaluated in closed form. -

We use Equation (16a) and perform an integration in 0,4, (over 9 = 4ir) on both

sides. This leads to the following differential equation for U1 (Z):

A + aS

U Cos 0 Z (A.2)
Cos O -- + (o0 + (I-4)Os)UI 0o S e P

p~~ -t ASp

We have made use here of the relation

21r IT

4 q (y) sin 0 d 0 d 1 1

which follows from Equations (4) and (14a), and have replaced the factor cos 0 on

the right side of Equation (16a) by cos 0. The approximation is discussed in the

main text.

Equation (A.2), a linear differential eq~iation of first order, can be solved

in closed form. With the boundary condition U.I(O) = 0 which takes into account

that 11 (0; O,ý) is zero in the range of forward directions, 0 < E ) - (see Equa-
tion (21a)), and negligible in the range of backward radiation, < 0 < iT, we

obtain:

CIA + (1- U) G S aoA + 0 S

UI(Z) = S+({ exp (- s 0 Z)-exp (- - Z) I (A.3)
p p

As a final remark, we note that UI(Z) is proportional to the energy density

associated with the specific intensity I1.
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APPENDIX B

Solution of Recursion Relation for I1.

The coefficients bm (0,1) of the specific intensity 1 are determined by the

recursion relations (Equations (23) of main text):

bI C,) 4T cos Op

Inm (Oo) 41r c J q(y) bm-d (B.2)
0 0

in = 2,3,..

where cosy = cos (p-@<) sin R sin 0' + cos o cos V

cosyp cos ) sin 0 sine + cos 0 cos 0
Pp p p
2)2 A-'

For q(y) 2 (-)e YS AS << I (B.3)

A ySYS

these equations can be solved by assuming that bm has the general form

with Ay « I
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Equation (B.2) requires that

-(•---) Bn_
B 2 2 --1 aw_ 1 4)2

Bm (--) e 4Ir Cos O 1 ,

yS ym-, 2x / expi A- (Y-) A -L. I}sin O'dOd""-,•

0 0 yS ? -I .'J . .•'1

where cos y" cos (p-i) sin o sin 0"+ cos O cos 0'
pp p P

In evaluating the integral on the right side, it is important to understand

that in the integrand we are dealing with three directions, i.e., 0,() and 0 p4p

and 0',¢'. For the purpose of the integration, the directions o,q and 0 4,p are
p) p

fixed while o)'. varies. Note, furthermore, that y and yp are the angles which

the variable direction includes with the fixed directions while yp, the angle be-

tween e,p and 0 ,p is a constant; see Fig. BI.
Ppp

Since it is assumed that the "beamwidths" AYS and A 1) are small, the integral

will have appreciable values only if the directions o,@ and 0 p,(p are in close

proximity to each other so that there is a 0.(h range in which both y and yp are

small simultaneously. Only this range will yield a si(,nificant contribution to the

integral. To determine this contribution, we introduce a local coordinate system

on the unit sphere over which the 0,*4 integration is performed. This coordinate

system is indicated in Fig. B2 in planar proje-tion. The coordinate u is counted

aloag the great circle through 0,i and 0 ,p q; the coordinate v is counted in the

direction normal to this circle. Both u and v are measured in radians. Evidently,

2 (- + , . , - -22 v?
S'I) 

-
.

and
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FIGIURE BI: Directions 0, ( and oW, p and t<, V.:
p p

For purposes of performing integration in Equation (B.5).
Direction C , ' is variable, while directions o, aand
u , @ are fixed.
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J' exp -(9f) Isin Vo d0 'd

Vn-

2 + - -1 }Jfexp - A'A2 A 2 v1ddYS VD -m-
(B.6)

A 2 +A~ 2
YS + rn-i

A2 + A2

The extension of the range of integration to infinity has a negligible effect on
the v~alue of the integral. Equation (B.5) is satisfied provided

1\2 2 A m rn1 mCos 0-Yrn YS +. y11-i p

With Equationrs (B.1), (B.3) and (B.4), we have

S OS

Hence, wit!) Equations (B.6b)

S In

and with Equation (B.4):

y 2

S1.o m~ 4 -YS (B.7b (ji,4 ) = ---- -. -)11 --i. 2 e( .7
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APPENDIX C

Asymptotic Behavior of 12.

The asymptotic behavior of 1For large t is determined by the expansion term

associated with the largest eigenvalue, SN, which is the only eigenvalue greater

than unity and, thus, provides the slowest attenuation rate. With Equations (25)

and (31), we have

- NN F()

NR) A e for (C.1)
27r N 1 =0 . . n

NNwhere AN is an ampl itude coefficient de~termnined by the boundary condition at -t- 0 .

and SN is the largest solution of the characteristic Equation (32). With Equation

NN
(30b), this characteristic equation may be written in the for.,

NW 'n - 1 (C.2)
2 n-o lin

SN
where Alin =n+1-fl-1

n

As N increases the sum on the right side of Equation (C.1) approaches the function

i -1(I- •.N) Since SN > 1, no singularity will occur and we have
N

S a
1 ( ; ) " I e A ;I fa ( ) fo r 'r-' (C .3)

where i - A Aa. AN- Sa =(SN)
fa a I N-N

Sa ýN

5imilarily, the sum on the left side of Equation (C.2) converges towards the integ-

ral 1 (1- Q. ) doi as N + and the ,:haracteristic equation for S takes the

I- . -',
forim'
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+1
J _ ,~Sa+-

-1 Sa.

The quantities Sa A and i are sh')wn in Figs. 7, 8 and 9 as functions of W.a a a
While fa and Sa are fully described by Equations (C.3) and (C.4) and depend on WAa a 

...only, the amplitude Aa depends also on the boundary conditions at T 0 and the

direction of incidence of the primary plane wave. Fig. 9 implies 0p 0 and bound-

ary condition (21b), i.e., 12 (O,p) = 0 for 0 < pi <_ 1. Numerical evaluations have

shown that for sufficiently large N > 20, the highest order term (k = N) in Equa-

tion (34) approximates Equation (C.3) closely.

Equations (C.3) and (C.4) can also be obtained directly by rigorous solution

of Equation (19b) with the forcing term suppressed. This term decreases with

exp (-i/p ) and is insignificant at large "c. This approach, however, leaves the

asymptotic amplitude Aa undetermined.
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